
I was working on this massive autonomous robot project and needed to adapt the axles from a pickup truck rear differential to take a set of bearings and sprockets. Sure, I could have sent them to the shop and paid $150 to have them machined on a lathe, but I did not want to fork out the dough any more than I wanted to wait a month to have this done, so I decided to pull a "MacGyver" and machine down the axles without needing a lathe. Impossible do to the precision needed? Heck no! I even added a keyway to each axle using an angle grinder and the end result was a perfect fit.
Let me show you how I adapted the axle shafts shown here to fit onto the 1 inch diameter bearings and sprockets.
A lathe in its simplest terms is a machine that spins a part so that a cutting bit can remove metal a little bit at a time. So, I knew if I could get the axle to spin, then I could just use my grinder to carefully remove the metal around the end of the shaft until it was exactly 1 inch in diameter. At this point, the axles were about 1.25 inches in diameter and tapered. To spin the axle, I welded a bolt to the center of the hub flange and then placed it in the chuck of my hand drill. The axle was then placed into a simple wooden jig and greased so that it would spin freely.

Going from 120 volts AC to 24 volts DC slowed the drill down to the perfect speed, yet gave it enough torque to spin the axles as I held the grinder disc to them. To power the drill from 24 volts DC, I just took two of the four robot batteries (marine batteries) and wired them in series with the drill power cord completing the circuit. I didn't even use wires for the plug; it was just sandwiched between the two battery terminals and held there by friction.

To machine down the axles, I ran my grinding disc back and forth along the 2 inch section while the drill spun the axles at about 120 RPM. I did not push hard on the grinder, and tried to keep a constant pace as I moved it back and forth along the area to be reduced. After about 50 strokes, I would stop the drill and check the axle thickness using the bearing I intended to install.
Once the axle was just slightly larger than necessary, I switched from the grinder disc to a sanding disc so the final machining could be done more accurately.

![]() | |
http://www.AtomicZombie.com |